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Abstract Little information is known on what the magni-
tude of nitrogen (N) processed by ectomycorrhizal (ECM)
fungal species in the field. In a common garden experiment
performed in a northern California oak woodland, we
investigated transfer of nitrogen applied as 15NH4 or
15NO3 from leaves to ectomycorrhizal roots of three oak
species, Quercus agrifolia, Q. douglasii, and Q. garryana.
Oak seedlings formed five common ectomycorrhizal
morphotypes on root tips. Mycorrhizal tips were more
enriched in 15N than fine roots. N transfer was greater to the
less common morphotypes than to the more common types.
15N transfer from leaves to roots was greater when 15NO�

3 ,
not 15NHþ

4 , was supplied.
15N transfer to roots was greater

in seedlings of Q. agrifolia than in Q. douglasii and Q.
garryana. Differential N transfer to ectomycorrhizal root
tips suggests that ectomycorrhizal morphotypes can influ-
ence flows of N from leaves to roots and that mycorrhizal
diversity may influence the total N requirement of plants.
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Introduction

Ectomycorrhizal communities in forests and woodlands are
species rich (Gardes and Bruns 1996; Gehring et al. 1998;
Baxter et al. 1999; Agerer 2006). Mycorrhizal diversity has
been studied primarily in coniferous ecosystems (Gardes
and Bruns 1996; Gehring et al. 1998; Kranabetter and
Wylie 1998; Wurzburger and Bledsoe 2001; Izzo et al.
2005; Korkama et al. 2006; Taniguchi et al. 2007; Tedersoo
et al. 2006; Kennedy et al. 2007). In oak woodlands,
several studies used ectomycorrhizal morphotyping to study
diversity (Berman and Bledsoe 1998; Baxter et al. 1999;
Cheng and Bledsoe 2002; Lindahl 2002; Avis et al. 2003;
Valentine et al. 2004; Moser et al. 2005). More recent
studies of oak ectomycorrhizal diversity used molecular
methods to identify fungal species (Baxter et al. 1999;
Bergemann and Garbelotto 2006; Dickie et al. 2002; Dickie
et al. 2004; Dickie and Reich 2005; Gebhardt et al. 2007;
Jakucs et al. 2005; Kennedy et al. 2003, 2007; Kovacs et al.
2000; Richard et al. 2005; Smith et al. 2006a,b; Smith et al.
2007; Walker et al. 2005). All these studies document the
high ectomycorrhizal diversity on oak trees in diverse
environments.

Ectomycorrhizal species may occupy different ecological
niches and have distinct functional roles, but functional
diversity is not well understood (Cairney 1999; Cairney and
Chambers 1999). Indirect evidence links functional diver-
sity to morphological and genetic diversity (Read et al.
1985; Marschner and Dell 1994). Ectomycorrhizal enzyme
activities (e.g., acid phosphatase and dehydrogenase)
change with fungal species and with season (Buée et al.
2005). Ectomycorrhizal communities are altered by drought
(Gehring et al. 1998). Ectomycorrhizal fungi differ in their
natural abundance of carbon (C) and nitrogen (N) (Högberg
et al. 1999; Hobbie and Colpaert 2003; Hobbie and Hobbie
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2006). Ectomycorrhizal communities change in response to
fertilization (Avis et al. 2003). Thus, research on diversity
suggests that ectomycorrhizal species can function differ-
ently, particularly in N transfer and processing. One
pathway for N transfer is from soil to mycorrhizas to plant,
while another pathway is the internal cycling of N within a
plant, from shoots to roots to ectomycorrhizas. In this study,
we focused on the second pathway.

Our goal was to determine whether different oak
ectomycorrhizal morphotypes affected transfer of 15N from
leaves to ectomycorrhizal roots, thus providing evidence of
functional diversity. In a field study, we grew seedlings of
three oak species: deciduous Quercus douglasii Hook. and
Arn. and Q. garryana Dougl. ex Hook, and evergreen Q.
agrifolia Nee. We applied enriched 15N-nitrate and 15N-
ammonium to oak leaves, and then measured transfer from
leaves to stems, roots, and ectomycorrhizal root tips. We
calculated N transfer to ectomycorrhizal root tips, N use
efficiency (NUE) and N derived from source (NDFS). We
asked the following questions: (1) Do oak species differ
with respect to N transfer to ectomycorrhizal roots? (2)
Does N form (15NHþ

4 and 15NO�
3 ) affect transfer to

ectomycorrhizal roots? (3) Are some ectomycorrhizal
morphotypes greater sinks for N than others?

Materials and methods

Site description

The University of California Sierra Foothill Research and
Extension Center (SFREC) at 39°15′N, 121°17′W was the
experimental site. Climate is characterized by hot, dry
summers and mild, rainy winters (http://danrrec.ucdavis.
edu/sierra_foothill/resources.html). Soils, developed from
basic metavolcanic bedrock, are loamy in texture, 0.3−0.6m
deep, well drained, pH6.4 (Cheng and Bledsoe 2002).
Vegetation is dominated by Q. douglasii (100 to 500 trees
ha−1) and intermingled with Q. wislizeni A. DC., Q.
kelloggii Newb., Pinus sabiniana Dougl. ex Dougl., P.
ponderosa Lawson & C. Lawson, Ceanothus cuneatus
(Hook.) Nutt., Toxicodendron diversilobum (Torr. & A.
Gray) Greene, and understory annual and perennial grasses
and forbs (Cheng and Bledsoe 2002).

Experimental design

In fall 1999, we collected acorns from three native oak
woodlands: Q. douglasii from SFREC, California, Q.
agrifolia from Skinner–Shipley Reserve, California, and
Q. garryana from Whetstone Savanna Preserve, Oregon.
Surface-sterilized (10% bleach, 10min) acorns were germi-
nated in pots (autoclaved field soil, coarse sand, fine sand,

1:1:1). Seedlings were grown in a greenhouse for 4months
and were nonmycorrhizal when transplanted into the field
site in March 2000. We planted 90 oak seedlings in three
50-m-diameter plots. Each plot contained ten groups of three
seedlings, one of each oak species, planted 50cm apart in a
triangular pattern. Seedlings were watered weekly during the
first summer. After 2years, 54 seedlings survived.

15N labeling, harvest, determination of mycorrhizal
infection, and morphotyping

Two years after transplanting (April 2002), 15N was applied
in a 2-ml vial attached to a “donor” leaf of each seedling.
Vials contained 1% N solution (9.0mg 15N/1.6ml); N was
supplied as either (NH4)2SO4 (54at.%

15N) or KNO3 (57at.%
15N; Cambridge Isotope Laboratory, Andover, MA). We
chose a 1% N solution because absorption through leaf
surfaces can be limiting, and much of the surface
application of 15N will not be absorbed into the leaf tissues.
Thus the 1% N solution was an appropriate concentration.
After 9days, seedlings were harvested; nondonor leaves and
stems were separated. Root systems were excavated to 30-cm
depth, transferred to the laboratory on ice, and then washed.
From each seedling, ectomycorrhizal root tips were removed,
examined microscopically, and sorted by ectomycorrhizal
morphotype based on color, morphology, and surface mantle
characteristics such as presence of emanating hyphae, mantle
patterns, and cystidia (Agerer 1987–1998; Goodman et al.
2002).

We collected a total of 4,727 ectomycorrhizal root tips
and separated tips by oak species (n = 3), N source (n = 2),
and morphotype (n = 5), for a total of 30 samples. Because
it was necessary to have approximately 100μg N for stable
isotope analysis, each sample was a composite of similar
morphotypes from five to seven seedlings of the same oak
species and same N treatment. Mycorrhizal infection
(percent of fine root length colonized) was determined by
the grid line intersect method (Brundrett et al. 1996).
Mycorrhizal tips were freeze dried; other plant parts were
oven dried (60°C). Dried plant samples were ground to a
homogeneous fine powder for isotopic analyses.

Determination of total N and 15N content, statistical
analyses

For %N and atom 15N at.%, all samples were analyzed with
a 20/20 Automated 15N/13C Analyzer-Mass Spectrometer
(Europa Scientific, Crewe, UK) at the UC Davis Stable
Isotope Facility. Calculations of δ15N (‰) were based on
Knowles and Blackburn (1993):

δ15N (‰) = [(Rsample/Rstandard) – 1]  1000 ð1Þ
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where R is the ratio of 15N/14N (at.%) of the sample and
standard. The value of Rstandard for atmospheric N2 is
0.0036765. The Stable Isotope Facility used a standard
δ15N value of 1.33 ± 0.10‰ (mean ± SE, n = 126,
(14NH4)2SO4, Fisher Scientific International, USA). Back-
ground 15N values for seedlings were determined by
analyzing tissues from unlabeled seedlings collected at the
field site. NUE was calculated as total seedling biomass/
total seedling N content (Berendse and Aerts 1987).
Calculation of %NDFS was modified from Shearer and
Kohl (1993):

%NDFS ¼ atom%15Nexcess sample
� �

=

atom%15Nexcess labeling sourceð Þ � 100

Data were analyzed by analysis of variance (ANOVA)
procedures. Shapiro–Wilk and Kolomogrov–Smirnov tests
were performed on all data, and transformations were made
to meet assumptions of homoscedasticity before ANOVA
(SAS/SAT User’s Guide 1995). Differences in means were

compared using Tukey’s honestly significant difference at
P ≤ 0.05 level (Sokal and Rohlf 1995).

Results

Ectomycorrhizal colonization and morphotype abundance

For all characteristics in Table 1, there was no effect of 15N
source (nitrate or ammonium); data were combined. Oak
seedling roots were heavily colonized by ectomycorrhizal
fungi (75%, Table 1) and weakly colonized by arbuscular
mycorrhizal fungi (14%, data not shown). Five common
ectomycorrhizal morphotypes were observed (Fig. 1a–e):
black with sparse, stiff hyphae, characteristic of Cenococcum
(Fig. 1a); brown with inner mantle of net prosenchyma and
outer mantle of regular synenchyma, characteristic of the
Thelephoraceae (Fig. 1b); tan with mantle of interlocking
irregular synenchyma, some cystidia, characteristic of mem-
bers of the Pezizales, particularly Tuber spp. (Fig. 1c); white
with mantle of felt prosenchyma, morphology characteristic

Table 1 Ectomycorrhizal morphotype abundance and characteristics of 2-year-old field-grown seedlings of deciduous Quercus douglasii (n=12)
and Q. garryana (n=14) and evergreen Q. agrifolia (n=10)

Characteristic Q. douglasii Q. garryana Q. agrifolia

Mycorrhizal infection (%) 74±19a 75±35a 77±25a
Mycorrhizal tips, numbers/seedling 124±40a 63±14b 112±27a
Morphotype abundance (%)
Black 35±7a, x 44±6a, x 38±4a, x
Brown 44±9a, x 31±6a, x 35±6a, x
Hairy 8±5a, y 8±4a, y 17±7a, y
Tan 10±5a, y 13±4a, y 5±3a, y
White 3±2a, y 4±3a, y 5±3a, y
Shoot height (cm) 13±3b 15±3b 22±3a
Dry weight (g/seedling)
Leaves 1.2±0.1b 1.4±0.2b 2.4±0.5a
Stems 1.3±0.1b 1.5±0.2b 2.6±0.5a
Roots (nonmycorrhizal) 5.8±0.5b 6.6±0.6b 11.2±2.3a
Total 8.3±0.7b 9.5±0.9b 16.2±3.1a
Root/shoot 2.3a 2.2a 2.2a
Mycorrhizal root tips 2.0×10–3 2.2×10–3 5.0 ×10–3

N concentration (%)
Leaf 2.6±0.2b 3.2±0.5a 2.2±0.3b
Stem 0.9±0.2b 1.1±0.3a 0.8±0.1b
Roots (nonmycorrhizal) 1.0±0.1b 1.4±0.2a 0.6±0.2c
Mycorrhizal root tips 1.9b 2.6a 1.3c
N content (mg/plant part)
Leaf 31.2±3.6c 44.5±7.3b 50.1±7.5a
Stem 12.0±2.0b 15.6±3.1b 22.0±5.8a
Roots (nonmycorrhizal) 58.2±8.9b 93.6±18.0a 62.0±8.5b
Total 101.4±9.6c 153.7±19.9a 134.1±15.7b
Root/shoot 1.4a 1.6a 0.9b
Mycorrhizal root tips 37.4×10–3 52.1×10–3 64.4×10–3

Seedling N index, biomass/N content 82 62 120

Values (means±standard errors of the mean) in rows (a, b, c) or in columns (x, y) with different letters are significantly different (P=0.05).
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of the genera Hebeloma and Inocybe as well as Boletales
(e.g. Boletus, Melanogaster, Octavianina; Fig. 1d); tan with
cottony emanating hyphae (“hairy,” no known fungal type;
Fig. 1e). Only a few roots were colonized by other rare
morphotypes; these were not included in our analyses.

The black morphotype was the most abundant, found on
35–44% of roots on seedlings of all three oak species
(Table 1). This morphotype was probably dominated by
Cenococcum geophilum, based on the characteristic stiff
bristly hyphae and surface patterns. The brown morphotype
was also abundant in all oak species (31–44%). Other
morphotypes were less common and not equally distributed
among the oak species. On Q. garryana roots, in addition
to black and brown morphotypes, the tan morphotype
(13%) was present but rarely any other morphotypes.
Similarly, Q. douglasii had both tan (7.9%) and hairy
(8.2%) morphotypes, less of the white morphotype (2.3%).
For Q. agrifolia roots, the less common morphotypes were
comprised of hairy (17%), tan (5.1%), and white (4.7%).

Seedling biomass, N concentration, and N content

Q. agrifolia seedlings were taller and had twice the biomass
of Q. garryana or Q. douglasii seedlings (Table 1). For all
three oak species, root/shoot ratios were similar with root
biomass about twice that of shoot biomass. Leaf, stem, and
root N concentrations were greater in Q. garryana than in
Q. douglasii or Q. agrifolia (Table 1). Q. douglasii and Q.
agrifolia had similar leaf and stem N concentrations,
however, root %N in Q. douglasii was significantly higher

than in Q. agrifolia. Q. garryana had greater total N (mg/
plant) than Q. douglasii or Q. agrifolia, because of greater
amounts of N in roots. Root-to-shoot N ratio was low (0.9)
in Q. agrifolia and higher (1.5) in Q. douglasii and Q.
garryana. Nitrogen use efficiency was about twofold
greater for Q agrifolia (120) than for the other two species
(mean = 72, Table 1).

15N transfer among oak leaves, stems, and roots

Natural abundance of 15N was similar for all three oak
species but differed by plant part: leaves (0.36711 ±
0.00065at.%), roots (0.37145 ± 0.00025), and ectomycor-
rhizal root tips (0.36563 ± 0.00064). Leaves were highly
15N enriched after 9days labeling; 15N moved from the
donor leaf throughout the seedling (Fig. 2). About 40% of
NDFS remained in leaves of Q. douglasii and Q. garryana,
somewhat less in Q. agrifolia (Fig. 2). As expected, more
15N moved to roots when 15NO�

3 was supplied than when
15NHþ

4 was the N source, especially for Q. agrifolia
(Fig. 2). Independent of 15N source, leaf 15N NDFS in Q.
douglasii and Q. garryana was significantly greater than
that in Q. agrifolia, but root NDFS was greater for Q.
agrifolia.

15N transfer into ectomycorrhizal root tips

Percent N in ectomycorrhizal root tips (1.8%) was greater
than in fine roots (1%; Tables 1 and 2). Percent N was low
in Q. agrifolia root tips (1.3%) and higher in Q. douglasii

Fig. 1 Five ectomycorrhizal
morphotypes from oak seed-
ling roots. a Black morphotype
(Cenococcum geophilum com-
plex); b brown morphotype,
characteristic of Thelephora-
ceae; c tan morphotype, char-
acteristic of Pezizales,
including Tuber sp.; d white
morphotype, characteristic of
Hebeloma sp. and Inocybe sp.;
e “Hairy” morphotype
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(1.9%) and Q. garryana (2.3%) root tips (Table 2). Based
on a fine-root carbon content of 40% (data not shown), we
calculated C/N for ectomycorrhizal root tips. Ratios were
similar among morphotypes but differed by oak species: Q.
agrifolia, 31, Q. douglasii, 22, and Q. garryana, 17.

Because of the small sample size of root tips and the
minimum total N required for mass spectrometric analyses,
it was necessary to combine ectomycorrhizal root tips of
three morphotypes (hairy, tan, and white) into a sample
labeled as “other.” Thus, we were unable to determine the
15N in each of the three morphotypes but only for the
combined sample. The 15N at.% and 15N content of
ectomycorrhizal root tips were not different between the
two N sources; data were combined (Table 2). Patterns were
similar for all three oak species (Table 2). Root tips of the
“other” category were more 15N enriched than were root
tips of either brown or black morphotypes, irrespective of

15N source or oak species (Table 2). Three fourths of the
mycorrhizal root tips were colonized by the black and
brown morphotypes, but these root tips acquired less 15N
than the white, tan, and hairy root tips (Tables 1 and 2). The
15N content was greatest in ectomycorrhizal root tips of Q.
agrifolia (Table 3).

Discussion

Cycling of 15N within oak seedlings

Plants acquire N via mycorrhizal roots from soils via
mycorrhizal networks connecting plants belowground
(Newman 1988; He et al. 2003; Simard and Durall 2004)
However, plants also circulate N within the plant via the
phloem as nitrate and low-molecular-weight organic N
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compounds (Marschner 1995; Silla and Escudero 2003;
Cooke and Weih 2005). In our study, root 15N content was
greater when 15NO�

3 was supplied than when 15NHþ
4 was

supplied, demonstrating the greater mobility of nitrate
compared to ammonium. More 15N was transferred to roots
of evergreen Q. agrifolia than to roots of the other two
deciduous oak species. During our experiment in April, Q.
agrifolia was fully leafed out, while Q. douglasii and Q.
garryana were in early stages of leaf expansion. Differ-
ences in phenology may have contributed to increased N

transfer to roots of Q. agrifolia. Mycorrhizal root tips were
significantly enriched in 15N concentration and N content
compared to fine roots, but there were no effects of N
source suggesting that the mobility of nitrate did not affect
transfer from roots to ectomycorrhizal root tips.

Differential 15N transfer into ectomycorrhizas

In our study, there were five common ectomycorrhizal
morphotypes on oak seedlings. Other researchers found

Table 2 Biomass and N characteristics (%N, 15N atom % excess and 15N content) of ectomycorrhizal root tips sorted into morphotypes for three
oak species

Parameter Oak species Morphotype

Black Brown Othera

Biomass, μg/root tip Q. douglasii 16.9 a, x 10.2 a, x 27.4 a, x
Q. garryana 18.4 a, x 17.0 a, x 21.4 a, x
Q. agrifolia 36.4 a, y 40.6 a, y 36.1 a, y

Nitrogen, % Q. douglasii 1.88 a, y 1.84 a, y 1.83 a, y
Q. garryana 2.35 a, x 2.36 a, x 2.24 a, x
Q. agrifolia 1.27 a, z 1.28 a, z 1.31 a, z

15N at.% excess×104 Q. douglasii 48 b, z 94 b, z 1070 a, y
Q. garryana 85 b, y 122 b, y 1080 a, y
Q. agrifolia 104 b, x 187 b, x 2012 a, x

15N content, μg/tip×106 Q. douglasii 13.0 b, z 15.1 b, z 466 a, y
Q. garryana 30.7 b, y 44.0 b, y 621 a, y
Q. agrifolia 45.2 b, x 104 b, x 941 a, x
Mean 29.6 54.4 676

For each parameter, values in rows (a, b) or columns (x, y, z) followed by the same letter are not significantly different (P=0.05).
a To obtain sufficient material for mass spectrometric analyses, it was necessary to combine samples of three morphotypes (hairy+tan+white) into
the “other” category.

Table 3 Two-way ANOVA for ectomycorrhizal root tips for four parameters for main effects (oak species, ectomycorrhizal morphotype); main
effects were significant, interactions were not (P=0.05)

Parameter df SS F value P>F

Biomass, mg/seedling
Oak spp. 2 1,468 8.54 0.004
Morphotypes 2 106 0.619 0.553
Oak spp. × morphotypes
Nitrogen, %
Oak spp. 2 3.159 591.5 <0.001
Morphotype 2 0.005 0.857 0.447
Oak spp.×morphotypes
15N at.% excess×104

Oak spp. 2 494,888 2.490 0.121
Morphotypes 2 6,571,432 33.080 <0.001
Oak spp.×morphotypes
15N content, μg/tip×106

Oak spp. 2 122,804 1.330 0.298
Morphotypes 2 1,609,306 17.400 0.0002
Oak spp.×morphotypes

15 N source was not significant, data were combined.
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similar diversity. In a riparian oak site in California’s
Central Valley, nine morphotypes were observed on 4-year-
old Q. lobata seedlings (Berman and Bledsoe 1998). In a
New Jersey oak woodland, Baxter et al. (1999) found nine
ectomycorrhizal types on seedlings of Q. rubra. In southern
Oregon, Valentine et al. (2004) found nine morphotypes on
seedlings and many more (39) ectomycorrhizal morpho-
types on mature trees of Q. garryana. In a California
coastal live oak woodland, about 40 ectomycorrhizal
morphotypes were found on Q. agrifolia seedling roots
(Egerton-Warburton and Allen 2001; Lindahl 2002).

For stable isotopic analyses, there was not sufficient
material of the three less common types, and they were
combined into an “other” category (tan, white, hairy) for
analyses. Thus, we cannot determine 15N enrichment of
each of the three types in “other.” However, the three
morphotypes—black, brown, and “other”—differed in 15N
enrichment with greatest enrichment in the “other” samples.
This pattern was repeated for all three oak species showing
that ectomycorrhizal morphotypes differed in N sink
strength, independent of host species or N source. This
differential 15N enrichment among ectomycorrhizal mor-
photypes is evidence for ectomycorrhizal functional diver-
sity in nitrogen transfer. Thus, a combined set of
morphotypes (“other”) gained more N than the other two
well-defined morphotypes, black and brown. Another study
(Treseder et al. 2004) demonstrated ectomycorrhizal func-
tional diversity in carbon acquisition, showing species-
specific patterns for carbon.

Ectomycorrhizal diversity

In our study, three quarters of the oak seedling roots were
ectomycorrhizal. Similar levels in oak fine roots have been
reported (Egerton-Warburton and Allen 2001; Lindahl
2002; Cheng and Bledsoe 2002; He et al. 2006). We
collected five common ectomycorrhizal morphotypes.
These morphotypes may not reflect individual fungal
species but several species. The black morphotype, found
on roots of all three oak species, was probably Cenococcum,
which produces distinctive morphological structures.
Cenococcum may be subdivided into three (Douhan and
Rizzo 2005) or five (Smith et al. 2004) lineages. However,
our study did not use molecular methods necessary to further
subdivide Cenococcum into different lineages.

There are differences in ectomycorrhizal exploration
types (Agerer 2001) that may relate to resource demand
(i.e., nitrogen). The black morphotype was probably
Cenococcum, which has surface thick black hyphae of
limited extension and may be considered as a “contact
type.” Cenococcum is not expected to invest in emanating
hyphae and therefore would not be expected to be as much
of a sink for N. In contrast, our “hairy” type has extensive

hyphal development and might be expected to be a greater
sink for N.

In other studies near our field site, molecular methods
were used to characterize ectomycorrhizal diversity on
mature trees of Q. douglasii (Smith et al. 2007) and Q.
wislizeni (Morris, personal communication). The most
common ectomycorrhizal taxa on these two oak species were
Cenococcum, Inocybe, Laccaria, Lactarius, Sebacinaceae,
Thelephoraceae, and Pezizales (including Tuber). Their
molecular data were supported by a wide diversity of
ectomycorrhizal sporocarps associated with Quercus spp. at
the site (Smith et al. 2007). Based on this molecular data
from oak tree roots and our observations of seedling roots
(Bledsoe and Southworth, personal communication), the
brown morphotype probably included members of the
Thelephoraceae, the tan morphotype Tuber sp. and related
Pezizales (Genea, Helvella), and the white morphotype
Hebeloma, Inocybe, and Sebacinaceae.

Differential root production of oak species

Q. agrifolia seedlings were taller than Q. douglasii and Q.
garryana seedlings, and their biomass was greater. The
ability of the evergreen oak Q. agrifolia to photosynthesize
year around may have resulted in increased growth. For all
oak species, root/shoot ratios were similar, with below-
ground biomass double that of aboveground. This emphasis
on root production is to be expected in plants growing in a
Mediterranean climate with summer drought (Gordon and
Rice 1993; Millikin and Bledsoe 1999; Cheng and Bledsoe
2002; Aanderud et al. 2003). Although seedling biomass
was greatest in Q. agrifolia, total N content was greatest in
Q. garryana, lower in Q. agrifolia, and least in Q.
douglasii. Compared to deciduous oaks, root %N was
lower in Q. agrifolia. Low root %N in Q. agrifolia
correlated with significant 15N transfer from leaves to roots.
Q. agrifolia seedlings used N efficiently, allocating addi-
tional N to the roots as it became available in shoots.

In summary, foliarly applied 15N was transferred from
oak leaves to ectomycorrhizal root tips. Our results
document differential 15N enrichment in different mycor-
rhizal morphotypes. In all three oak species, one morpho-
type group (tan, hairy, and white) accumulated about 20
times more 15N than the more abundant black and brown
morphotypes, although ectomycorrhizal root tip N concen-
trations were similar among morphotypes. Our results
demonstrate that not all ectomycorrhizas are “created
equal” and that N transfer to roots can be influenced by
ectomycorrhizal morphotypes.
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